Publications

50. Hausel, T.: Commutative avatars of representations of semisimple Lie groups, Proc Natl Acad Sci USA 121 (38), 2024, https://doi.org/10.1073/pnas.2319341121, arXiv:2311.02711

49. Gonzalez M., Hausel, T.: Hitchin map on even very stable upward flows, Internat.
J. Math., 35(9):Paper No. 2441009, 2024, arXiv:2303.01404

48. Hausel, T., Rychlewicz, K.: Spectrum of equivariant cohomology as fixed point scheme, arXiv:2212.11836

47. Hausel, T., Mellit, A. , Minets, A. , Schiffmann O.: P=W via H_2, arXiv:2209.05429

46. Hausel, T.:Enhanced mirror symmetry for Langlands dual Hitchin systems, Proc. Int. Cong. Math. 2022, Vol. 3, pp. 2228–2249, 10.4171/ICM2022/164

45. Hausel, T., Hitchin, N.: Very stable Higgs bundles, equivariant multiplicity and mirror symmetryarxiv:2101.08583, Inventiones 228, pages 893–989 (2022), doi.org/10.1007/s00222-021-01093-7

44. Hausel, T., Chiorello, S. M., Szenes, A.: Enumerative approach to P=W, arxiv:2002.0892

43. Hausel, T., Letellier, E.R. Villegas, F.Locally free representations of quivers over commutative Frobenius algebras, Selecta Mathematica, Volume 30, article 20, (2024), arxiv:1810.01818

42. Hausel, T., Wong M., Wyss D. Arithmetic and metric aspects of open de Rham spaces, PLMS (3) 2023, 1-70, doi.org/10.1112/plms.12555

41. Hausel, T., Mellit, A., Pei, D. Mirror symmetry with branes by equivariant Verlinde formulae, in: Geometry and Physics: Volume I, Oxford University Press, 2018, pp. 189–218. arXiv:1712.04408

40. Hausel, T., Mereb M., Wong M. Arithmetic and representation theory of wild character varietiesJournal of the European Mathematical Society Volume 21, Issue 10, 2019, pp. 2995-3052, arXiv:1604.03382

39. Hausel, T., R. Villegas, F.: Cohomology of large semiprojective hyperkaehler varieties,  Astérisque No. 370 (2015), 113–156.arXiv:1309.4914

38. Hausel, T.  Letellier, E.R. Villegas, F.Positivity for Kac polynomials and DT-invariants of quiversAnnals of Mathematics, 177 (2013) 1147-1168, Issue 3,  arXiv:1204.2375

37. Hausel, T.,  Letellier, E.R. Villegas, F.Arithmetic harmonic analysis on character and quiver varieties II, Advances in Mathematics, Volume 234, 2013, 85-128, arXiv:1109.5202

36. Hausel, T.: Global topology of the Hitchin system, in Handbook of Moduli II, editors: Gavril Farkas and Ian Morrison, International Press, 2013, arXiv:1102.1717

35. Hausel, T, Pauly, C : Prym varieties of spectral covers,   Geometry and Topology 16 (2012) 1609–1638,  arXiv:1012.4748

34. de Cataldo, M, Hausel, T.,Migliorini, L.Exchange between perverse and weight filtration for the Hilbert schemes of points of two surfaces , Journal of Singularities , volume 7 (2013), 23-38,   arXiv:math/1012.2583

33. de Cataldo, M, Hausel, T.,Migliorini, LTopology of Hitchin systems and Hodge theory of character varieties: the case A_1Annals of Mathematics, Volume 175 (2012), Issue 3 , 1329–1407arXiv:1004.1420

32. Hausel, T. Letellier, E.R. Villegas, F.Topology of character varieties and representations of quiversComptes Rendus Mathematique, Volume 348, Issues 3-4, February 2010, Pages 131-135 doi:10.1016/j.crma.2010.01.025; arXiv:0905.3491

31. Hausel, T.: Kac conjecture from Nakajima quiver varietiesInventiones Mathematicae, Volume 181, Number 1, 2010, 21-37, arXiv:0811.1569

30. Hausel, T.  Letellier, E.R. Villegas, F.Arithmetic harmonic analysis on character and quiver varietiesDuke Mathematical JournalVolume 160, Number 2 (2011), 323-400, arXiv:0810.2076

29. Hausel, T.: S-duality in hyperkähler Hodge theory in The many facets of geometry – A tribute to Nigel Hitchin , OUP 2010, arXiv:0709.0504

28.Hausel, T., Rodriguez-Villegas, F.Mixed Hodge polynomials of character varietiesInventiones Mathematicae, 174, no. 3, (2008), 555–624,arXiv:math.AG/0612668

27. Hausel, T.: Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transformProceedings of the National Academy of Sciences of the United States of America 103no. 166120–6124, arxiv:math.AG/0511163

26. Hausel, T.: Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve, in Geometric Methods in Algebra and Number Theory Series: Progress in Mathematics, Vol. 235 Bogomolov, Fedor; Tschinkel, Yuri (Eds.) 2005, arXiv: math.AG/0406380

25. Hausel, T., Proudfoot, N.Abelianization for hyperkähler quotientsTopology44 (2005) 231-248, arXiv: math.SG/0310141

24. Hausel, T.: Quaternionic Geometry of MatroidsCentral European Journal of Mathematics3 (1), (2005), 26–38 arXiv: math.AG/0308146

23. Hausel, T.,Swartz, E.Intersection forms of toric hyperkähler varietiesProceedings of the American Mathematical Society134, (2006), 2403-2409, arXiv: math.AG/0306369

22. Etesi, G., Hausel, T.: On Yang-Mills-instantons on multi-centered metrics, arXiv: hep-th/0207196 Communications in Mathematical Physics235 No. 2 , (2003) 275-288

21. Hausel, T., Hunsicker, E.Mazzeo, R.Hodge cohomology of gravitational instantonsDuke Mathematical Journal122 Issue 3, (2004) 485-548, arXiv: math.DG/0207169

20. Etesi, G., Hausel, T.: Geometric construction of new Yang-Mills instantons over Taub-NUT spacePhysics Letters B 514 (1-2) (2001), 189-199 arXiv: hep-th/0105118

19. Hausel, T., Sturmfels, B.Toric hyperkaehler varietiesDocumenta Mathematica7 (2002), 495-534, arXiv: math.AG/0203096

18. Hausel, T., Thaddeus, M.Examples of mirror partners arising from integrable systemsComptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique333 (4) (2001) 313-318, arXiv: math.AG/0106140

17. Hausel, T., Thaddeus, M.Mirror symmetry, Langlands duality and Hitchin systemsInventiones Mathematicae153, No. 1, 2003, 197-229 arXiv: math.AG/0205236

16. Etesi, G., Hausel, T.: Geometric interpretation of Schwarzschild instantonsJournal of Geometry and Physics 37 (2001) 126-136 arXiv: hep-th/0003239

15. Hausel, T., Thaddeus, M.Generators for the cohomology ring of the moduli space of rank 2 Higgs bundles Proceedings of the London Mathematical Society 88 (2004) 632-658 ,arXiv: math.AG/0003093

14. Hausel, T., Thaddeus, M. Relations in the cohomology ring of the moduli space of rank 2 Higgs bundlesJournal of the American Mathematical Society16 (2003), 303-329, arXiv: math.AG/0003094.

13. Hausel, T.: Geometric quantization and Jones-Witten theory (in Hungarian) in Algebraic topology and geometry in Physics, (lecture notes of Summer school for Hungarian Physics students, Óbánya, 1997), MAFIHE, Budapest, 1999

12. Hausel, T.: Geometry of the moduli space of Higgs bundles, thesis for Ph.D. in Pure Mathematics, DPMMS, Cambridge University, August 1998, arXiv:math.AG/0107040

11. Hausel, T.: Vanishing of intersection numbers on the moduli space of Higgs bundles Adv. Theor. and Math. Phys. 2 (1998) 1011-1040, arXiv:math.AG/9805071

10. Hausel, T.: Compactification of moduli of Higgs bundles Journal für die reine und angewandte Mathematik Volume 503 (1998) 169-192, arXiv:math.AG/9804083,

9. Hausel, T., Makai, E. jr.,Szûcs, A.: Inscribing cubes and covering by rhombic dodecahedrons via equivariant topologyMathematika 47 (2000), 371-397 , arXiv: math.MG/9906066

8. Hausel, T., Makai, E. jr.,Szûcs A.: Polyhedra inscribed and circumscribed to convex bodiesGeneral Mathematics , 1997, Proc. of 3rd Internat. Workshop on Diff. Geom. and its Appls. and the 1st German-Romanian Seminar on Geometry, 1997, Sibiu, Romania

7. Hausel, T., Moment map, toric varieties and mixed volumes, dissertation for diploma in Department of MathematicsEötvös Loránd University , December 1995

6. Hausel, T.: On a Gallai-type problem for latticesActa Mathematica Hungarica (66) (1995), no.1-2, 127-145

5. Bezdek K.,Hausel, T.: On the number of lattice hyperplanes which are needed to cover the lattice points of a convex bodyIntuitive Geometry (Szeged,1991), 27-31, Colloq. Math. Soc. János Bolyai, 63, North-Holland, Amsterdam, 1994

4. Bezdek K.,Hausel, T.: Coating by cubes. Beiträge zur Algebra und Geometrie 35 (1994), no.1, 119-123

3. Hausel, T.: Transillumination of lattice packing of ballsStudia Sci. Math. Hungar 27 (1992), no.1-2, 241-242

2. Hausel, T.: On a two dimensional problem in lattice geometry, (in Hungarian) KÖMAL (Journal of Mathematics and Physics for Secondary Schools) (1989), no. 3, 103-107

1. Hausel, T.: Pedal triangle and convergent sequences , (in Hungarian) KÖMAL (Journal of Mathematics and Physics for Secondary Schools) (1988) no. 10, 433-437